Physical Chemistry Textbook by David W. Ball

Physical Chemistry Textbook by David W. Ball

Chapter 1: Gases and the Zeroth Law of Thermodynamics 

1.1 Synopsis 

1.2 System, Surroundings, and State 

1.3 The Zeroth Law of Thermodynamics 

1.4 Equations of State 

1.5 Partial Derivatives and Gas Laws 

1.6 Nonideal Gases 

1.7 More on Derivatives 

1.8 A Few Partial Derivatives Defined 

1.9 Summary 

Exercises 

Chapter 2: The First Law of Thermodynamics 

2.1 Synopsis 

2.2 Work and Heat 

2.3 Internal Energy and the First Law of Thermodynamics 

2.4 State Functions 

2.5 Enthalpy 

2.6 Changes in State Functions 

2.7 Joule-Thomson Coefficients 

2.8 More on Heat Capacities 

2.9 Phase Changes 

2.10 Chemical Changes 

2.11 Changing Temperatures 

2.12 Biochemical Reactions 

2.13 Summary 

Exercises 

Chapter 3: The Second and Third Laws of Thermodynamics 

3.1 Synopsis 

3.2 Limits of the First Law 

3.3 The Carnot Cycle and Efficiency 

3.4 Entropy and the Second Law of Thermodynamics 

3.5 More on Entropy 

3.6 Order and the Third Law of Thermodynamics 

3.7 Entropies of Chemical Reactions 

3.8 Summary 

Exercises 

Chapter 4: Free Energy and Chemical Potential 

4.1 Synopsis 

4.2 Spontaneity Conditions 

4.3 The Gibbs Free Energy and the Helmholtz Energy 

4.4 Natural Variable Equations and Partial Derivatives 

4.5 The Maxwell Relationships 

4.6 Using Maxwell Relationships 

4.7 Focusing on G 

4.8 The Chemical Potential and Other Partial Molar Quantities 

4.9 Fugacity 

4.10 Summary 

Exercises 

Chapter 5: Introduction to Chemical Equilibrium 

5.1 Synopsis 

5.2 Equilibrium 

5.3 Chemical Equilibrium 

5.4 Solutions and Condensed Phases 

5.5 Changes in Equilibrium Constants 

5.6 Amino Acid Equilibria 

5.7 Summary 

Exercises 

Chapter 6: Equilibria in Single-Component Systems 

6.1 Synopsis 

6.2 A Single-Component System 

6.3 Phase Transitions 

6.4 The Clapeyron Equation 

6.5 The Clausius-Clapeyron Equation 

6.6 Phase Diagrams and the Phase Rule 

6.7 Natural Variables and Chemical Potential 

6.8 Summary

Chapter 7: Equilibria in Multiple-Component Systems 

7.1 Synopsis 

7.2 The Gibbs Phase Rule 

7.3 Two Components: Liquid/Liquid Systems 

7.4 Nonideal Two-Component Liquid Solutions 

7.5 Liquid/Gas Systems and Henry’s Law 

7.6 Liquid/Solid Solutions 

7.7 Solid/Solid Solutions 

7.8 Colligative Properties 

7.9 Summary 

Exercises 

Chapter 8: Electrochemistry and Ionic Solutions 

8.1 Synopsis 

8.2 Charges 

8.3 Energy and Work 

8.4 Standard Potentials 

8.5 Nonstandard Potentials and Equilibrium Constants 

8.6 Ions in Solution 

8.7 Debye-Hückel Theory of Ionic Solutions 

8.8 Ionic Transport and Conductance 

8.9 Summary 

Exercises 

Chapter 9: Pre-Quantum Mechanics 

9.1 Synopsis 

9.2 Laws of Motion 

9.3 Unexplainable Phenomena 

9.4 Atomic Spectra 

9.5 Atomic Structure 

9.6 The Photoelectric Effect 

9.7 The Nature of Light 

9.8 Quantum Theory 

9.9 Bohr’s Theory of the Hydrogen Atom 

9.10 The de Broglie Equation 

9.11 Summary: The End of Classical Mechannics 

Exercises 271

Chapter 10: Introduction to Quantum Mechanics 

10.1 Synopsis 

10.2 The Wavefunction 

10.3 Observables and Operators 

10.4 The Uncertainty Principle 

10.5 The Born Interpretation of the Wavefunction; Probabilities 

10.6 Normalization 

10.7 The Schrödinger Equation 

10.8 An Analytic Solution: The Particle-in-a-Box 

10.9 Average Values and Other Properties 

10.10 Tunneling 

10.11 The Three-Dimensional Particle-in-a-Box

10.12 Degeneracy 303

10.13 Orthogonality 

10.14 The Time-Dependent Schrödinger Equation 

10.15 Summary 

Exercises 

Chapter 11: Quantum Mechanics: Model Systems and the Hydrogen Atom 

11.1 Synopsis 

11.2 The Classical Harmonic Oscillator 

11.3 The Quantum-Mechanical Harmonic Oscillator 

11.4 The Harmonic Oscillator Wavefunctions 

11.5 The Reduced Mass 

11.6 Two-Dimensional Rotations 

11.7 Three-Dimensional Rotations 

11.8 Other Observables in Rotating Systems

11.9 The Hydrogen Atom: A Central Force Problem 

11.10 The Hydrogen Atom: The Quantum-Mechanical Solution 

11.11 The Hydrogen Atom Wavefunctions 

11.12 Summary 

Exercises 

Chapter 12: Atoms and Molecules 

12.1 Synopsis 

12.2 Spin 

12.3 The Helium Atom 

12.4 Spin Orbitals and the Pauli Principle

12.5 Other Atoms and the Aufbau Principle 

12.6 Perturbation Theory 

12.7 Variation Theory 

12.8 Linear Variation Theory 

12.9 Comparison of Variation and Perturbation Theories 

12.10 Simple Molecules and the Born-Oppenheimer Approximation 

12.11 Introduction to LCAO-MO Theory 

12.12 Properties of Molecular Orbitals 

12.13 Molecular Orbitals of Other Diatomic Molecules 

12.14 Summary 

Exercises 

Chapter 13: Introduction to Symmetry in Quantum Mechanics 

13.1 Synopsis 

13.2 Symmetry Operations and Point Groups 

13.3 The Mathematical Basis of Groups 

13.4 Molecules and Symmetry

13.5 Character Tables 

13.6 Wavefunctions and Symmetry 

13.7 The Great Orthogonality Theorem 

13.8 Using Symmetry in Integrals 

13.9 Symmetry-Adapted Linear Combinations 

13.10 Valence Bond Theory 

13.11 Hybrid Orbitals 

13.12 Summary 

Exercises 457

Chapter 14: Rotational and Vibrational Spectroscopy 

14.1 Synopsis 

14.2 Selection Rules 

14.3 The Electromagnetic Spectrum 

14.4 Rotations in Molecules 

14.5 Selection Rules for Rotational Spectroscopy 

14.6 Rotational Spectroscopy 

14.7 Centrifugal Distortions 

14.8 Vibrations in Molecules 

14.9 The Normal Modes of Vibration 

14.10 Quantum-Mechanical Treatment of Vibrations 

14.11 Selection Rules for Vibrational Spectroscopy 

14.12 Vibrational Spectroscopy of Diatomic and Linear Molecules 

14.13 Symmetry Considerations for Vibrations 

14.14 Vibrational Spectroscopy of Nonlinear Molecules 

14.15 Nonallowed and Nonfundamental Vibrational Transitions 

14.16 Fingerprint Regions 

14.17 Rotational-Vibrational Spectroscopy 

14.18 Raman Spectroscopy 

14.19 Summary 

Exercises 

Chapter 15: Introduction to Electronic Spectroscopy and Structure 

15.1 Synopsis 

15.2 Selection Rules 

15.3 The Hydrogen Atom 

15.4 Angular Momenta: Orbital and Spin 

15.5 Multiple Electrons: Term Symbols and Russell-Saunders Coupling 

15.6 Electronic Spectra of Diatomic Molecules 

15.7 Vibrational Structure and the Franck-Condon Principle 

15.8 Electronic Spectra of Polyatomic Molecules 

15.9 Electronic Spectra of  Electron Systems: Hückel Approximations 

15.10 Benzene and Aromaticity 

15.11 Fluorescence and Phosphorescence 

15.12 Lasers 

15.13 Summary

Exercises 

Chapter 16: Introduction to Magnetic Spectroscopy 

16.1 Synopsis 

16.2 Magnetic Fields, Magnetic Dipoles, and Electric Charges 

16.3 Zeeman Spectroscopy 

16.4 Electron Spin Resonance 

16.5 Nuclear Magnetic Resonance 

16.6 Summary 

Exercises 

Chapter 17: Statistical Thermodynamics: Introduction 

17.1 Synopsis 

17.2 Some Statistics Necessities 

17.3 The Ensemble 

17.4 The Most Probable Distribution: Maxwell-Boltzmann Distribution 

17.5 Thermodynamic Properties from Statistical Thermodynamics 

17.6 The Partition Function: Monatomic Gases 

17.7 State Functions in Terms of Partition Functions 

17.8 Summary 

Exercises 

Chapter 18: More Statistical Thermodynamics 

18.1 Synopsis 

18.2 Separating q: Nuclear and Electronic Partition Functions 

18.3 Molecules: Electronic Partition Functions 

18.4 Molecules: Vibrations 

18.5 Diatomic Molecules: Rotations 

18.6 Polyatomic Molecules: Rotations 

18.7 The Partition Function of a System 

18.8 Thermodynamic Properties of Molecules from Q 

18.9 Equilibria 

18.10 Crystals

18.11 Summary 

Exercises

Chapter 19: The Kinetic Theory of Gases 

19.1 Synopsis 

19.2 Postulates and Pressure 

19.3 Definitions and Distributions of Velocities of Gas Particles 

19.4 Collisions of Gas Particles 

19.5 Effusion and Diffusion 

19.6 Summary 

Exercises

Chapter 20: Kinetics 

20.1 Synopsis 

20.2 Rates and Rate Laws 

20.3 Characteristics of Specific Initial Rate Laws 

20.4 Equilibrium for a Simple Reaction 

20.5 Parallel and Consecutive Reactions 

20.6 Temperature Dependence 

20.7 Mechanisms and Elementary Processes 

20.8 The Steady-State Approximation 

20.9 Chain and Oscillating Reactions 

20.10 Transition-State Theory 

20.11 Summary 

Exercises 

Chapter 21: The Solid State: Crystals 

21.1. Synopsis 

21.2 Types of Solids 

21.3 Crystals and Unit Cells 

21.4 Densities 

21.5 Determination of Crystal Structures 

21.6 Miller Indices 

21.7 Rationalizing Unit Cells 

21.8 Lattice Energies of Ionic Crystals 

21.9 Crystal Defects and Semiconductors 

21.10 Summary 

Exercises 

Chapter 22: Surfaces 

22.1 Synopsis 

22.2 Liquids: Surface Tension 

22.3 Interface Effects 

22.4 Surface Films 

22.5 Solid Surfaces 

22.6 Coverage and Catalysis

22.7 Summary 

Exercises

Overall Rating

0

5 Star
(0)
4 Star
(0)
3 Star
(0)
2 Star
(0)
1 Star
(0)
APA

Consults, E. (2022). Physical Chemistry Textbook by David W. Ball. Afribary. Retrieved from https://tracking.afribary.com/books/physical-chemistry-textbook-by-david-w-ball

MLA 8th

Consults, Education "Physical Chemistry Textbook by David W. Ball" Afribary. Afribary, 23 Sep. 2022, https://tracking.afribary.com/books/physical-chemistry-textbook-by-david-w-ball. Accessed 22 Jan. 2025.

MLA7

Consults, Education . "Physical Chemistry Textbook by David W. Ball". Afribary, Afribary, 23 Sep. 2022. Web. 22 Jan. 2025. < https://tracking.afribary.com/books/physical-chemistry-textbook-by-david-w-ball >.

Chicago

Consults, Education . "Physical Chemistry Textbook by David W. Ball" Afribary (2022). Accessed January 22, 2025. https://tracking.afribary.com/books/physical-chemistry-textbook-by-david-w-ball