A COMPARATIVE ASSESSMENT ON THE EFFECT OF WATER INFLUX/PRODUCTION, FORMATION AND RESIDUAL FLUIDCOMPRESSIBILITY, AND GAS SORPTION ON THE VALUE OF ORIGINAL GAS IN PLACE USING THE MA

For  a  volumetric  gas  reservoir,  gas  expansion  (the  most  significant  source  of  energy)  dominates  depletion  behavior,  and  the  general gas  MBE  is  a  very  simple  yet  powerful  tool  for  interpretation.  However,  in  cases  where other  source  of  energy  are  significant  enough  to  cause deviation  from  the linear  behavior  of  the  P/Z  plot,  a more  sophisticated tool  is  required.  For  this,  a more advanced  form  of  the MBE  has  been developed,  and the  standard  P/Z  plot  is  modified  to maintain a linear  trend with  the  simplicity  of  interpretation.  Material  balance  has  long been used  in  reservoir  engineering practice  as  a simple  yet  powerful  tool  to  determine the Original-Gas-In-Place  (G).  The  conventional  format  of  the gas  material  balance  equation  is  the  simple  straight  line  plot  of  P/Z  versus  cumulative  gas  production  (Gp)  which  can  be  extrapolated  to  zero  P/Z to  obtain G.  The  graphical  simplicity  of  this  method  makes  it  very  popular.  The  method  was  developed for  a  “volumetric”  gas  reservoir.  It  assumes a  constant  pore volume of  gas  and  accounts  for  the  energy  of  gas  expansion,  but  it  ignores  other  sources  of  energy  such as  the  effects  of formation  compressibility,  residual  fluids  expansion  and  aquifer  support.  It  also does  not  include  other  sources  of  gas  storage such  as  connected reservoirs  or  adsorption in  coal/shale.  In  the past,  researchers  have introduced modified  gas  material  balance equations  to account  for  these other  sources  of  energy.  However,  the simplicity  of  the P/Z  straight  line  is  lost  in the  resulting  complexity  of  these  equations.  In this  research project  work,  a  new  format  of  the  gas  material  balance  equation  is  presented  which recaptures  the simplicity  of  the straight  line  while  accounting for  all  the  drive mechanisms.  It  uses  a  P/Z**  instead  of  P/Z.  The  effect  of  each  of  the  mentioned drive  mechanisms  appears  as  an  effective compressibility  term  in  the  new  gas  material  balance  equation.  Also,  the  physical  meaning  of  the  effective  compressibilities  are explained and compared  with  the  concept  of  drive indices.  Furthermore,  the gas  material  balance is  used to  derive a  generalized  rigorous  total  compressibility  in the  presence  of  all  the  above-mentioned  drive  mechanisms,  which  is  very  important  in  calculating  the  pseudo-time  used in rate transient  analysis of  production data