Abstract
Despite the early success demonstrated with the hepatitis B vaccine, no other recombinant engineered vaccine has been approved for use in humans. It is unlikely that a recombinant vaccine will be developed to replace an existing licensed human vaccine with a proven record of safety and efficacy. This is due to the economic reality of making vaccines for human use. Genetically engineered subunit vaccines are more costly to manufacture than conventional vaccines, since the antigen must be purified to a higher standard than was demanded of older, conventional vaccines. Each vaccine must also be subjected to extensive testing and review by the FDA, as it would be considered a new product. This is costly to a company in terms of both time and money and is unnecessary if a licensed product is already on the market. Although recombinant subunit vaccines hold great promise, they do present some potential limitations. In addition to being less reactogenic, recombinant subunit vaccines have a tendency to be less immunogenic than their conventional counterparts. This can be attributed to these vaccines being held to a higher degree of purity than was traditionally done for an earlier generation of licensed subunit vaccines. Ironically, the contaminants often found in conventional subunit vaccines may have aided in the inflammatory process, which is essential for initiating a vigorous immune response. This potential problem may be overcome by employing one of the many new types of adjuvants that are becoming available for use in humans. Recombinant subunit vaccines may also suffer from being too well-defined, because they are composed of a single antigen. In contrast, conventional vaccines contain trace amounts of other antigens that may aid in conferring an immunity to infectious agents that is more solid than could be provided by a monovalent vaccine. This problem can be minimized, where necessary, by creating recombinant vaccines that are composed of multiple antigens from the same pathogen. These issues are less of a concern with a live attenuated vaccine, since these vaccines are less costly, require fewer steps to manufacture, and elicit long-lived immunity after only a single dose. Unfortunately, live vaccines carry a higher risk of vaccine-induced complications in recipients that make their use in highly developed, litiginous countries unlikely. In lesser developed countries, where the prevalence of disease and the need for effective vaccines outweighs the risk associated with their administration, live vaccines may play an important role in human health. This review has attempted to make the reader aware of some of the current approaches and issues that are associated with the development of these vaccines. Genetically engineered vaccines hold great promise for the future, but the potential of these vaccines to improve human and animal health has yet to be fully realized.
Inaku, F. (2018). Genetically modified vaccines. Afribary. Retrieved from https://tracking.afribary.com/works/genetically-modified-vaccines-2166
Inaku, Francis "Genetically modified vaccines" Afribary. Afribary, 29 Jan. 2018, https://tracking.afribary.com/works/genetically-modified-vaccines-2166. Accessed 13 Nov. 2024.
Inaku, Francis . "Genetically modified vaccines". Afribary, Afribary, 29 Jan. 2018. Web. 13 Nov. 2024. < https://tracking.afribary.com/works/genetically-modified-vaccines-2166 >.
Inaku, Francis . "Genetically modified vaccines" Afribary (2018). Accessed November 13, 2024. https://tracking.afribary.com/works/genetically-modified-vaccines-2166