Host–parasitoid community model and its potential application in biological control of cereal stemborers in Kenya

Abstract:

A two-host–two-parasitoid model was constructed to assess the effects of the introduced larval parasitoid, the braconid Cotesia flavipes, on its primary target host, the invasive crambid Chilo partellus, and on secondary host species, in inter-specific competition with Cotesia sesamiae, the main native parasitoid species of stemborers in Kenya. The model assumed that: (1) there was no host iscrimination by either parasitoid species; (2) Cotesia flavipes was the superior competitor that out-competed Cotesia sesamiae when the host was suitable; and (3) Cotesia flavipes could only develop in an unsuitable host if it had been previously parasitized by Cotesia sesamiae.Model parameters were estimated from surveys conducted in Kenya and from laboratory experiments. Different scenarios of host and parasitoid species composition and host suitability occurring in the different ecological zones in Kenya were analyzed. Results indicated that: (1) the coexistence of stemborer host populations are determined by their population growth rates, the degree of aggregation of the parasitoids and their searching efficiency; (2) in the regions where both the invasive and the predominant native host species were suitable to either parasitoid species,stemborer densities would be reduced to and controlled at low densities, and Cotesia flavipes would become the dominant parasitoid species. However, the extinction or predominance of the native stemborer species depends on the ratio of the growth rates of exotic and native stemborers and their relative searching efficiencies; and (3) if the native host species was acceptable but unsuitable to Cotesia flavipes,the parasite would not become established