Mathematical Modelling of the COVID-19 Pandemic with Demographic Effects

Abstract/Overview

In this paper, a latent infection susceptible–exposed–infectious–recovered model with demographic efects is used to understand the dynamics of the COVID-19 pandemics. We calculate the basic reproduction number (R0) by solving the diferential equations of the model and also using next-generation matrix method. We also prove the global stability of the model using the Lyapunov method. We showed that when the R0 < 1 or R0 ≤ 1 and R0 > 1 or R0 ≥ 1 the disease-free and endemic equilibria asymptotic stability exist theoretically. We provide numerical simulations to demonstrate the detrimental impact of the direct and latent infections for the COVID-19 pandemic.