Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network

ABSTRACT

An artificial neural network (ANN) model was developed for the analysis and prediction of the relationship between cutting and process parameters during high-speed turning of nickel-based, Inconel 718, alloy. The input parameters of the ANN model are the cutting parameters: speed, feed rate, depth of cut, cutting time, and coolant pressure. The output parameters of the model are seven process parameters measured during the machining trials, namely tangential force (cutting force, Fz), axial force (feed force, Fx), spindle motor power consumption, machined surface roughness, average flank wear (VB), maximum flank wear (VBmax) and nose wear (VC). The model consists of a threelayered feedforward backpropagation neural network. The network is trained with pairs of inputs/outputs datasets generated when machining Inconel 718 alloy with triple (TiCN/Al2O3/TiN) PVD-coated carbide (K 10) inserts with ISO designation CNMG 120412. A very good performance of the neural network, in terms of agreement with experimental data, was achieved. The model can be used for the analysis and prediction of the complex relationship between cutting conditions and the process parameters in metal-cutting operations and for the optimisation of the cutting process for efficient and economic production.

Overall Rating

0

5 Star
(0)
4 Star
(0)
3 Star
(0)
2 Star
(0)
1 Star
(0)
APA

Ezugwu, E & Fadare, D (2021). Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network. Afribary. Retrieved from https://tracking.afribary.com/works/modelling-the-correlation-between-cutting-and-process-parameters-in-high-speed-machining-of-inconel-718-alloy-using-an-artificial-neural-network

MLA 8th

Ezugwu, E and D Fadare "Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network" Afribary. Afribary, 15 Mar. 2021, https://tracking.afribary.com/works/modelling-the-correlation-between-cutting-and-process-parameters-in-high-speed-machining-of-inconel-718-alloy-using-an-artificial-neural-network. Accessed 15 Nov. 2024.

MLA7

Ezugwu, E, D Fadare . "Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network". Afribary, Afribary, 15 Mar. 2021. Web. 15 Nov. 2024. < https://tracking.afribary.com/works/modelling-the-correlation-between-cutting-and-process-parameters-in-high-speed-machining-of-inconel-718-alloy-using-an-artificial-neural-network >.

Chicago

Ezugwu, E and Fadare, D . "Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network" Afribary (2021). Accessed November 15, 2024. https://tracking.afribary.com/works/modelling-the-correlation-between-cutting-and-process-parameters-in-high-speed-machining-of-inconel-718-alloy-using-an-artificial-neural-network

Document Details
E O Ezugwu D A Fadare Field: Mechanical Engineering Type: Article/Essay 11 PAGES (5128 WORDS) (pdf)