 
        LINEAR ALGEBRA IN MATHEMATICS
MODULE 1  PRELIMINARIES  1     
1.1  Sets and Functions    1     
1.2  Mathematical Induction  12     
1.3  Finite and Infinite Sets  16  
MODULE 2  THE REAL NUMBERS    22     
2.1  The Algebraic and Order Properties of R  22     
2.2  Absolute Value and Real Line    31     
2.3  The Completeness Property of R    34     
2.4  Applications of the Supremum Property  38     
2.5  Intervals          44  
MODULE 3  SEQUENCES AND SERIES      52     
3.1  Sequences and Their Limits      53     
3.2  Limit Theorems        60     
3.3  Monotone Sequences        68     
3.4  Subsequences and the Bolzano-Weierstrass Theorem  75     
3.5  The Cauchy Criterion          80     
3.6  Properly Divergent Sequences        86     
3.7  Introduction to Series           89  
MODULE 4  LIMITS  96     
4.1  Limits of Functions        97     
4.2  Limit Theorems        105     
4.3  Some Extensions of the Limit Concept  111  
MODULE 5  CONTINUOUS FUNCTIONS  119     
5.1  Continuous Functions   120     
5.2  Combinations of Continuous Functions  125     
5.3  Continuous Functions on Intervals    129     
5.4  Uniform Continuity        136     
5.5  Continuity and Gauges      145     
5.6  Monotone and Inverse Functions    149  
MODULE 6  DIFFERENTIATION  157     
6.1  The Derivative  158     
6.2  The Mean Value Theorem  168     
6.3  L’Hospital Rules    176     
6.4  Taylor’s Theorem    183
Ajibade, S. (2020). MTH 241 Introduction to Real Analysis. Afribary. Retrieved from https://tracking.afribary.com/books/mth241-1
Ajibade, Samson kay "MTH 241 Introduction to Real Analysis" Afribary. Afribary, 15 Apr. 2020, https://tracking.afribary.com/books/mth241-1. Accessed 30 Oct. 2025.
Ajibade, Samson kay . "MTH 241 Introduction to Real Analysis". Afribary, Afribary, 15 Apr. 2020. Web. 30 Oct. 2025. < https://tracking.afribary.com/books/mth241-1 >.
Ajibade, Samson kay . "MTH 241 Introduction to Real Analysis" Afribary (2020). Accessed October 30, 2025. https://tracking.afribary.com/books/mth241-1