Abstract
Background After the first case of COVID-19 being announced in China in December 2019, various diagnostic technologies have been developed at unprecedented pace with the aim of providing a basis for accurate clinical intervention. However, some assays including CRISPR-based diagnostics and loop-mediated isothermal amplification (LAMP) have been less explored. As new COVID-19 technologies emerge, there is need for them to be assessed, validated and improved upon. Moreover, there is paucity of data on the essential factors governing the selection of an appropriate diagnostic approach within the correct timeframe. Myths and origin of SARS-CoV-2 remain to be controversial. Consequently, this review aims at exploring the current COVID-19 diagnostic technologies, performance evaluation, principles, suitability, specificity, sensitivity, successes and challenges of the technologies for laboratory and bedside testing.
Main Body To date, there exist more publications on COVID-19 diagnostics as compared to the Zika virus. The SARS-CoV-2 virus genome profiles were readily available by 31st of December 2019. This was attributed to the fast-paced sharing of the epidemiological and diagnostics data of COVID-19. Timely profiling of the virus genome accelerated the development of diagnostic technologies. Furthermore, the rapid publication of studies that evaluated several diagnostic methods available provided baseline information on how the various technologies work and paved way for development of novel technologies.
Conclusion Up to date, RT-PCR is the most preferred as compared to the other assays. This is despite the repeated false negatives reported in many of the study findings. Considering that COVID-19 has caused devastating effects on the economy, healthcare systems, agriculture and culture, timely and accurate detection of the virus is paramount in the provision of targeted therapy hence reducing chances of drug resistance, increased treatment costs and morbidity. However, information on the origin of SARS-CoV-2 still remains elusive. Furthermore, knowledge and perception of the patients toward management of SARS-CoV-2 are also paramount to proper diagnosis and management of the pandemic. Future implications of the misperceptions are that they may lead to increased non-compliance to SARS-CoV-2-related World Health Organization (WHO) policies and guidelines.
Okoth, W (2024). SARS-CoV-2 origin, myths and diagnostic technology developments. Afribary. Retrieved from https://tracking.afribary.com/works/sars-cov-2-origin-myths-and-diagnostic-technology-developments
Okoth, Wambani "SARS-CoV-2 origin, myths and diagnostic technology developments" Afribary. Afribary, 04 Jun. 2024, https://tracking.afribary.com/works/sars-cov-2-origin-myths-and-diagnostic-technology-developments. Accessed 22 Jan. 2025.
Okoth, Wambani . "SARS-CoV-2 origin, myths and diagnostic technology developments". Afribary, Afribary, 04 Jun. 2024. Web. 22 Jan. 2025. < https://tracking.afribary.com/works/sars-cov-2-origin-myths-and-diagnostic-technology-developments >.
Okoth, Wambani . "SARS-CoV-2 origin, myths and diagnostic technology developments" Afribary (2024). Accessed January 22, 2025. https://tracking.afribary.com/works/sars-cov-2-origin-myths-and-diagnostic-technology-developments