STATISTICAL TECHNIQUES FOR DETECTING TRAFFIC ANOMALIES THROUGH PACKET HEADER DATA

ABSTRACT
This paper proposes a traffic anomaly detector, operated in postmortem and in real-time, by passively monitoring packet headers of traffic. The frequent attacks on network infrastructure, using various forms of denial of service attacks, have led to an increased need for developing techniques for analyzing network traffic. If efficient analysis tools were available, it could become possible to detect the attacks, anomalies and to take action to contain the attacks appropriately before they have had time to propagate across the network. In this paper, we suggest a technique for traffic anomaly detection based on analyzing correlation of destination IP addresses in outgoing traffic at an egress router. This address correlation data are transformed using discrete wavelet transform for effective detection of anomalies through statistical analysis. Results from trace-driven evaluation suggest that proposed approach could provide an effective means of detecting anomalies close to the source. We also present a multidimensional indicator using the correlation of port numbers and the number of flows as a means of detecting anomalies.

TABLE OF CONTENT
TITLE PAGE                                    
CERTIFICATION                                
APPROVAL                                
DEDICATION                                    
ACKNOWLEDGEMENT                        
ABSTRACT                                    
TABLE OF CONTENT                                

CHAPTER ONE
1.0    INTRODUCTION                            
1.1    STATEMENT OF PROBLEM                        
1.2    PURPOSE OF STUDY                            
1.3    AIMS AND OBJECTIVES                         
1.4    SCOPE/DELIMITATIONS                        
1.5    LIMITATIONS/CONSTRAINTS                        
1.6    DEFINITION OF TERMS                        

CHAPTER TWO
2.0    LITERATURE REVIEW                            

CHAPTER THREE
3.0    METHODS FOR FACT FINDING AND DETAILED DISCUSSIONS OF THE SYSTEM
3.1     METHODOLOGIES FOR FACT-FINDING
3.2    DISCUSSIONS             

CHAPTER FOUR
4.0    FUTURES, IMPLICATIONS AND CHALLENGES OF THE SYSTEM
4.1    FUTURES
4.2    IMPLICATIONS
4.3    CHALLENGES

CHAPTER FIVE
5.0    RECOMMENDATIONS, SUMMARY AND CONCLUSION        
5.1    RECOMMENDATION                            
5.2    SUMMARY                                
5.3    CONCLUSION                                
5.4    REFERENCES
                

Overall Rating

0

5 Star
(0)
4 Star
(0)
3 Star
(0)
2 Star
(0)
1 Star
(0)
APA

Possibility, A. (2018). STATISTICAL TECHNIQUES FOR DETECTING TRAFFIC ANOMALIES THROUGH PACKET HEADER DATA. Afribary. Retrieved from https://tracking.afribary.com/works/statistical-techniques-for-detecting-traffic-anomalies-through-packet-header-data-931

MLA 8th

Possibility, Aka "STATISTICAL TECHNIQUES FOR DETECTING TRAFFIC ANOMALIES THROUGH PACKET HEADER DATA" Afribary. Afribary, 29 Jan. 2018, https://tracking.afribary.com/works/statistical-techniques-for-detecting-traffic-anomalies-through-packet-header-data-931. Accessed 21 Nov. 2024.

MLA7

Possibility, Aka . "STATISTICAL TECHNIQUES FOR DETECTING TRAFFIC ANOMALIES THROUGH PACKET HEADER DATA". Afribary, Afribary, 29 Jan. 2018. Web. 21 Nov. 2024. < https://tracking.afribary.com/works/statistical-techniques-for-detecting-traffic-anomalies-through-packet-header-data-931 >.

Chicago

Possibility, Aka . "STATISTICAL TECHNIQUES FOR DETECTING TRAFFIC ANOMALIES THROUGH PACKET HEADER DATA" Afribary (2018). Accessed November 21, 2024. https://tracking.afribary.com/works/statistical-techniques-for-detecting-traffic-anomalies-through-packet-header-data-931